
1

Draft

Managing Distributed Systems with Smart Subscriptions

Robert E. Filman Diana D. Lee

Research Institute for Advanced Computer Science Caelum Research Corporation
NASA Ames Research Center NASA Ames Research Center

Mail Stop 269-1 Mail Stop 269-1
Moffett Field, California 94305 Moffett Field, California 94305

rfilman@arc.nasa.gov ddlee@arc.nasa.gov

Abstract

We describe an event-based, publish-and-subscribe mechanism based on using “smart

subscriptions” to recognize unstructured events. We present a hierarchy of subscription

languages (propositional, predicate, temporal and agent) and algorithms to expedite the

recognition of subscriptions interested in particular events. This mechanism has been

applied to the management of distributed applications.

Introduction

This work arose in the context of developing a framework (the Object Infrastructure

Framework, or OIF) to simplify creating distributed applications. That project developed

technology to endow distributed systems with better reliability, security, quality of

service and manageability. OIF extended the standard mechanisms of distributed object

technology (e.g., CORBA, Java RMI) to include discrete injectors on the communication

paths between components. Injectors effectively wrap components and can manipulate

and extend their communications. Because injectors are discrete, uniform objects, OIF is

able to provide utilities to organize and manage them. One of the elements of the OIF is

Pragma, a language for mapping between the specification of desired properties of a

system and the consistent insertion of injectors that implement those properties on the

methods of objects. OIF also includes a way for injectors to communicate, allowing

injectors to annotate ordinary calls with additional information. By injecting the behavior

for error recovery, redundancy, security checks, intrusion recognition, priority queue

management, and so forth, OIF makes substantial progress in separating and simplifying



Managing Distributed Systems 12/02/99

2

the first three classes of requirements: reliability, security and quality of service

[Filman00].

However, the fourth, manageability, shows a certain resistance to a pure injection

approach. What is manageability? Following the standard of the computer networking

field [Stallings93], we identify five elements of manageability:

� Configuration management: Making sure the appropriate elements are in the appropriate

places.

� Fault diagnosis: Monitoring and debugging a system by detecting conditions (complex and

compound events) that indicate potential problems.

� Intrusion detection: Recognizing patterns that indicate a potential intrusion attempt (for

example, a succession of unsuccessful logon attempts by a particular user with passwords

selected from a dictionary).

� Performance analysis: Dynamically reporting information regarding the efficiency of

various activities.

� Accounting: Tracking and logging patterns of interesting usage and events.

Of these five, the first proves amenable to a pure injector approach—configuration

injectors can annotate requests with the local configuration, to be vetted by the

correspondent. On the other hand, the others present something of a hybrid problem.

Fault diagnosis can be aided by injectors reporting interesting calls and returned values;

intrusion detection, by reporting suspicious events; performance analysis, by reporting

the time requests were received and the time taken to process them; and accounting by

reporting things worth billing. Injectors can report on management issues, but some

additional structure is needed to implement manageability. That is, injectors provide a

locus for recognizing and reporting interesting events, but not a structure for what to do

with these events. This suggests two issues: (1) declaring to whom should an interesting

event be reported and (2) defining what makes an event interesting.

One architectural approach would be (1) to have every recipient interested in some

set of events inform every possible generator of such events of its interest, and (2) to

make every generator of events responsible for informing every interested recipient on

event occurrence. Such an architecture has several severe limitations, the most critical of

which is that it requires too much knowledge of the structure of a system in too many



Managing Distributed Systems 12/02/99

3

places. For example, changes in  the organization of event producers need to be reflected

in every event consumer. Direct connection between producers and consumers also has

the potential for slowing down the critical activities of the producers to perform the event

management, which might be as trivial as bookkeeping.

A solution to these problems is to position an intermediary between producers and

consumers, an event channel. Producers funnel their events to the event channel.

Consumers describe to the event channel which events interest them. The event channel

is responsible for forwarding the appropriate events to the interested consumers. This

notion of event channel also goes under the rubric “Publish and Subscribe.” Event

consumers “subscribe” to the (interesting) events “published” by event producers.

This work is devoted to the question, “How can we code event channels so that

exactly the right events are delivered to the appropriate consumers?” Here we take a bit

more inspiration from the network management experience. There are two standards for

network management protocols: the Simple Network Management Protocol (SNMP) and

the Common Management Information Protocol (CMIP) [Stallings93]. Roughly, SNMP

is a simple low-level protocol that provides an awkward interface for probing the state of

a network device. CMIP is a richer, higher-level protocol that allows more expressive

data structures and the ability to have devices independently generate events on

interesting occasions. CMIP is obviously the superior environment, with the minor caveat

that, experientially, CMIP’s reporting consumes 90% of the network bandwidth

[Filman97].

We seek rich expressiveness without overwhelming communication cost. This can

be accomplished by directing events only to interested parties. Although inspired by

network management, we’re doing this at the software component level, not the hardware

device level (though conceptually, hardware devices can be seen as kinds of software

components.) We’re working under the assumption that communication costs far more

than processing. Hence, it is better to expend effort checking that the communication is

desired than to communicate volumes of uninteresting data. Of course, local processing

isn’t quite free, either. The are thus addressing two issues: (1) what subscription

languages allow consumers to precisely express interesting events, and (2) which



Managing Distributed Systems 12/02/99

4

algorithms allow event channels to organize the subscription space so as to efficiently

recognize subscribers interested in particular events.

Architecture

Languages like CORBA and Java have popularized the notion of interface. An interface

describes a set of behaviors (methods). An actual implementation class can support an

interface by implementing the methods of the interface.  The interface acts as a pseudo-

type: variables can be declared to be of the interface’s type and objects whose class

supports the interface are recognized as being in it.

The two relevant interfaces for this discussion are event consumers and event

channels. A consumer is an object to which one can publish an event (encoded as a

string). A consumer is entitled to do whatever it wants with an event. The simplest

consumer might just print the event on a debugging screen, write the event to a log file,

or update a database with some salient facet of the event.

Any object can be an event producer by composing a string that is a good event

representation and invoking publish on some consumer. (Producers are not, of course,

structurally defined elements, as object-oriented systems do not regard the callers of

particular methods as noteworthy groups.)

The interface event channel extends consumer with a subscribe method. Subscribe

takes

(1) a reference to a consumer,

(2) a description, in some subscription language, of the set of events interesting to

that consumer,

(3) a description of what about the existing event and environment is to be reported

to the consumer (that is, the structure of an event to publish to the consumer),

and

(4) optional signature information (discussed below) that can be used to optimize

subscription algorithms.

Subscribe returns a ticket for managing the subscription. Using that ticket, the subscriber

can modify or cancel a subscription. Event channels also include a method for obtaining



Managing Distributed Systems 12/02/99

5

the closure of the set of subscriber interests—that is, a subscription that describes the

union of all the channel’s subscriptions. These relationships are illustrated in Figure 1.

Event channels, being consumers, also have a publish method. The implementation

of publish in an event channel considers the new event in light of the existing

subscriptions (and, perhaps, past events) and publishes that event (or some derivative of

the event) to every consumer whose subscription matches the event.

In OIF, event producers can use not only the local arguments of their calls but also

information from the thread’s environment in deciding if a particular event is worthy of

publication. OIF arranges to have the salient elements of this environment copied as part

of the annotations of ordinary calls [Filman00]. For example, a process could tag a

particular call with some special symbol and recognize processes created as

consequences of that call as retaining that symbol in their environment.

In OIF, every virtual address space has one globally (within that address space)

well-known event channel. Any application or injector that has an event to report can

publish to that event channel. Any consumer that wishes to receive events can subscribe

to its local event channel. Event channels on different virtual machines can subscribe to

each other. In this way, the publish and subscribe mechanism becomes distributed, while

the most appropriate local decisions are made about whether to distribute an event

(Figure 2).



Managing Distributed Systems 12/02/99

6

How do the various virtual machines become aware of each other? OIF offered two

different mechanisms. The first was to push this issue to the system architect. References

to event channels could, after all, be listed on the namespace system, advertised on

traders, and communicated in the body of messages. In this style, the application was

responsible for setting up the event channel network and arranging appropriate

subscriptions among the nodes of that network. Alternatively, the underlying system

could arrange, as part of the annotations of communications, to distribute the knowledge

of the existence of the caller’s event channel. This has an interesting “event horizon”

event—knowledge of channels interested in the effects of an action would travel as fast

as that action and its consequences. In either case, the architect needed to ensure the

“tree-like” distribution of every kind of event.

EventChannel

public String subscribe( Consumer ls,
                          String criteria,
                         String outEvent,
 String interests)
public void setCriteria ( String token,
        String criteria,
        String outEvent,

String interests)
public String interests ( )
public String outEvents ( )
public Consumer [ ] correspondents ( )

Consumer

public void publish (String what)
public void close( )
public void flush( )

Consumers support the publish interface.

Event channels, a subclass of
Consumers, support interfaces for
subscriptions (taking a reference to the
subscribing consumer, the criteria—a
subscription string, the form of the
desired output event, and optimization
data for quickly vetting events. Event
channels also have interfaces for
modifying subscriptions and returning the
union of its subscriptions and interests,
and the set of other event channel
correspondents.

Figure 1. Consumer and EventChannel interfaces



Managing Distributed Systems 12/02/99

7

Virtual machine

Event channel

Actor

V.M.

E.C.

V.M.

E.C.

A

V.M.

E.C.

V.M.

E.C.

V.M.

E.C.

V.M.

E.C.

.
.

.

.

.

.

Subscription flow
Event flow

Figure 2: Event channels on different virtual machines subscribe to each other and receive event flows.

Events

Event systems usually support one of two different kind of events. Most event systems, in

the structured tradition of strongly-typed programming languages, define classes of

events as records, where the class structure is universally known. In such a model, the

manipulator of an event knows exactly the fields of the record. Often the subscription

language consists of merely describing interest in all records of a given class or subclass.

This has the advantage of giving the programmer a reliable set of information on which

to build—if I have an event of type e, I know it has fields x, y, and z. It has disadvantage

of requiring too much commonly shared information, both in space and time. We do not

want to demand that every event channel have knowledge of all kinds of events or even

to posit the existence of an event definition repository. We expect the event structure to

change, both as temporary event types are created to answer the questions of debugging

and as new event types are created as part of the system evolution.



Managing Distributed Systems 12/02/99

8

OIF takes the opposite tack, in the tradition of dynamic languages such as Lisp. In

OIF, events are property sets (name–value pairs), without system restrictions (or

promises) as to the existence of any particular name–value pair in any particular event.

OIF provides a marshaling mechanism for converting event structures to strings for

transmission, and an unmarshaling mechanism for reinflating them back to the property–

value pairs. Thus, the string event representation:

“userid: Fred; time: 12:40:18; type: error; message: read unhappy maknam”

would translate into an event object with four properties (userid, time, type and message)

with the corresponding (string) values. (The interpreter is responsible for doing data

conversion for numeric operators. There are specific notations for strings that represent

remote object references and values that are themselves events.)

For debugging and system evolution, the property approach allows us to introduce

new event fields into a running system. In terms of subscription languages, reference to

the fields of events is straightforwardly uniform. This has the further virtue that no

common understanding of event structure definitions is required across the distributed

system. It has the corresponding disadvantage that we lack compile-time checks that

structures will have properties not explicitly demanded in subscriptions.

Subscription languages

A goal of this work was to minimize uninteresting communications. Broadly, this

suggests a richly expressive subscription language, where a subscriber can precisely

describe which events are of interest. However, the richer the subscription language the

more effort is involved both at coding time in creating the subscription interpreter and at

run time in deciding if a particular subscription is satisfied by a given set of events. In

OIF, we created a series of subscription languages of increasing expressiveness. In this

we are reminded of the hierarchies of automata, formal language grammars, and logics,

where successively elements extend the expressibility of simpler mechanisms, often at

the cost of greater complex computability. (In practice, in both formal language theory

and OIF, these structures are not always strictly hierarchical.) In OIF, we have four

subscription languages: propositional, predicate, temporal and agent.



Managing Distributed Systems 12/02/99

9

The propositional language deals solely in the existence of properties of events. A

subscriber can express interest in A, B, and C, and any event that mentioned (as

properties at the top-level) A, B and/or C matches. In some sense, the propositional

language is a property-list generalization of the class hierarchy of conventional

subscription languages. An event with properties A, B, and C can be viewed as being in

the classes “HasA,” “HasB,” and “HasC.” A subscription would be the disjunction of

such classes.

The predicate language provides a way to refer to the values fields of events (and

subfields of contained events), constants, and values from the environment; and to

combine these values with relations (e.g., “less than”) and propositional connectives (e.g.,

“or,” and “not”) to form a logical well-formed formula. Using a Cambridge-prefix

syntax, a subscription looking for error or warning events for user Joe would be

expressed as

(and (or (= type ’error)
(= type ’warning))

(= user ’Joe))

where the quotes designate literals.

The temporal language loosens the prior restriction to single events. The

propositional and predicate languages reference a single event at a time and, as a default,

forward that event to the consumer. The temporal language allows for expression of

relations among several events. Thus, one can talk about the existence of events E1, E2,

and E3, such that E1 has occurred before E2, which occurred before E3, and which share

a common user. We adopted the language of JESS [Friedman-Hill98], a RETE-based

forward chaining, rule-based expert-system shell for our temporal language. (The “?”

variables here are to be understood as being unified, much as in Prolog.) Using JESS, the

preceding subscription would be expressed as:

(event (time ?t1) (userid ?u1)) (1)
(event (time ?t2) (userid ?u2))
(event (time ?t3) (userid ?u3))
(test (< ?t1 ?t2 ?t3))
(test (eq ?u1 ?u2 ?u3))

In this example, the (event (time ?t1) (user ?u1)) statement requires that

an event (E1) include the time and userid properties where ?t1 and ?u1 represent the



Managing Distributed Systems 12/02/99

10

values of the time and userid respectively. The statement (test (< ?t1 ?t2

?t3)) requires ?t1 < ?t2 < ?t3; the statement (test (eq ?u1 ?u2 ?u3))

requires the userids of E1, E2, and E3 be equal.

In practice, memory is not infinite. Any practical temporal event matching

mechanism needs a policy about discarding “no longer relevant” events—for example,

discarding events that haven’t matched a rule element within the last X minutes.

Similarly, the system needs to define a concurrency semantics relating the timing of

subscriptions and events. In OIF, we adopted the naïve approach that only the most recent

n events were promised to be available for matching and the new subscriptions might

recognize old events.

The agent language carries the implication of the Cambridge-prefix form to its

logical extension. That is, subscriptions are themselves programs, invoked by event

occurrences and able to examine the local event repository. This then becomes a

mechanism for distributing agents throughout a system. Since we have not yet

implemented an agent language, we have little to say about them except to note their

existence at the top of the language hierarchy and their straightforward implementation

with any of the standard Lisp interpreters.

In operational terms, the subscription of a subscribe method expected a string. The

event channel would parse this string with respect to the particular language. In our

implementations, we used Cambridge prefix form as the grammatical substrate of the

various subscription languages, as it is the simplest-to-parse recursive language.

Event channel algorithms

We turn to the issue of efficiently implementing the subscription mechanism in event

channels. Naïvely, the event channel could sequentially go through its subscriptions,

checking each for satisfaction. We note five possible algorithmic improvements on this

behavior: sig, memo, lattice, compile and Rete. (We have implemented all but the fourth.)

Which is best? The optimal subscription channel algorithm is a function of the expected

distribution of events and subscriptions. Some algorithms take advantage of an expected

variety in the published events, while others do better on related or repeated event types.



Managing Distributed Systems 12/02/99

11

Similarly, the amount of effort expended when a new subscription is received can be

worthwhile only given a particular frequency of subscription changes.

Sig, memo and lattice rely on recognizing the signature of subscriptions. The

signature of a subscription is set of event properties demanded by the subscription. The

signature of

(and (or (= type ‘error)
(= type ‘warning))

(= user ‘Joe))

is

{type, user}

while the signature of

(and (or (= type ‘error)
(= status ‘warning))

(< 3 delay)
(= session ‘g0043))

is

{delay, session}

Sig

On receiving an event, Sig determines the properties mentioned in that event. Let us call

that set fields. Before evaluating the subscription of each subscriber, it checks to see if the

signature of that subscription is a subset of fields. As both the signature and the fields are

represented with bit vectors, the subset comparison can be quick (as long as the

application is not wantonly generating new properties). That is, Sig is a fast way of

establishing that a given event is not of interest to a subscription because it is missing

some necessary properties. Sig is appropriate for applications that generate a variety of

different events and use computationally complex subscriptions.

Memo

Memo, like Sig, computes the fields of an event and compares them to the signatures of

subscriptions. It extends this by constructing a memoization table mapping fields to

successful signatures. Having discovered, for example, that fields {delay, session, type}

satisfy the signatures of subscriptions X, Y, and Z, Memo stores the mapping {delay,



Managing Distributed Systems 12/02/99

12

session, type} �^X, Y, Z} in its memo table. When another event with that same fields

occurs, Memo finds the stored value and checks only the subscriptions of X, Y and Z. On

subscription updates, Memo needs examine the power set of the signature of the changed

subscription (or at least those items not in the intersection of the power sets of the old and

new signatures), updating the corresponding memo values. In practice, it may be easier to

clear the entire memo table than to perform this computation (which might have a

healthful, purgative effect, anyway.)

Memo is useful for situations where the subscription set changes slowly and events

with the same fields occur repeatedly.

Lattice

Lattice extends Memo with a notion of subsumption. That is, if subscription X has

signature {A, B}, and subscription Y has signature {A, B, C}, then if event E is not of

interest to X, it is certainly not of interest to Y.

In general, the signatures of subscriptions form a lattice with respect to subset

(Figure 4). The lattice algorithm constructs the (sparse) lattice as a data structure. We’d

like to be able to move up the lattice, discarding the entire superstructure over a

subsuming node if the “of interest” test fails. Unfortunately, we haven’t been able to

determine an efficient way of doing this—sorting through the multiple connections of the

lattice seems to be more work than sequentially checking signatures. The current lattice

algorithm works by “flattening” the lattice to a single path. That is, of all the possible

subsumptions in the lattice, we select a subset such that each node (except the root) is

subsumed by exactly one other. In implementation terms, this is expressed as a skip table.

All subscriptions with the same signature are grouped as a set. The set are arranged in a

sequential table, number 0, number 1, and so forth. Associated with this table is another

“skip table.” Failure to meet the signature test on item i in the table allows one to consult

the skip value, call it j, and to continue searching signatures starting at j. All the items

between i and j have been subsumed by the failure at i. Conceivably, a dynamic version

of lattice could reorder the flattening sequence in response to the historical pattern of

events.



Managing Distributed Systems 12/02/99

13

Lattice handles subscription change more easily than Memo, and is most appropriate

is when there is a lot of subsumption in the subscription structures.

Compile

Each subscription can be viewed programmatically: if the subscription condition is met,

then perform the forwarding action. Compile treats the entire subscription set as a

program by (1) sequencing the subscriptions, and (2) performing arbitrary compiler

optimizations on the resulting program. In particular, elements such as common sub-

expressions can be moved forward so as to be computed only once, tests such as (> x 3)

can be placed so as to shadow (> x 7), and subsumptions can be realized by moving

subsumed rules into the then-parts of more general subscriptions.

Compile is most appropriate for a relatively static subscription set that contains a

large number of common sub-expressions.

T

{f1,f3,f4}         {f1,f2,f4}

                   {f1,f4} {f2,f3}    {f2,f4}

{f1} {f4}

{ }

Figure 4. A partial lattice for several signatures. The small circles represent
subscriptions associated with that signatre.Starting at bottom, if an event fails a
containment test (say at {f1}) then it will certainly fail all nodes reachable below {f1}, that
is, {f1,f4}, {f1, f2, f4}, {f1, f3, f4} and T.



Managing Distributed Systems 12/02/99

14

Rete

The first four algorithms deal with single-event subscriptions—that is, where the

subscription refers to just one event. What of subscriptions in temporal languages, that

can say things like “when five password hacking events have occurred on an account

recently, warn …”? For such subscriptions we turned to Rete.

Rete is a standard AI algorithm that addresses the problem taking a set of patterns

and matching them against a set of events. (In most AI applications, learning a new fact is

an event.) For most algorithms, the combinatorial nature of comparing large sets of

patterns to large sets of objects becomes a challenge in efficiency. However, Rete is

particularly successful in being time-efficient. Rete works by storing the partial matches

of conditional statements in a network structure. When additional events come in, they

are matched against the appropriate partial matches and more complete partial matches

are moved further through the network.

We use Rete by mapping OIF-subscription conditions to Rete patterns and OIF-

events to Rete events,. We implemented an OIF interface to the Java Expert System Shell

(JESS) implementation of Rete. Using the JESS language, the general form of a

subscription becomes a list of conditions followed by a list of actions to take when the

conditions are met by a set of events. The conditions can express ideas such as the

“existence of events E1, E2, and E3, such that E1 has occurred before E2 that occurred

before E3, that share a common user” (as we illustrated in example (1)). Or conditions

can be expressed as an algorithm encapsulated in a computer program or function. For

example, if there is a program or function whose signature is

DetectHackingEvents(int number, int timeInterval),

one can make Rete aware of its existence by using an OIF/JESS interface. Then one can

express the condition “when five password hacking events have occurred on an account

in the last five minutes” as

DetectHackingEvents(5,5)

Similarly, the list of actions that one can ask Rete to perform when a set of conditions is

met can be as simple as a printing a message or can be as complicated as an algorithm

encapsulated in a computer program or function.



Managing Distributed Systems 12/02/99

15

The major weakness of Rete is its appetite for storage space—the structures used to

store the network of partial matches can become large. OIF includes an interface to allow

cleanup of old items in these structures.

Applications

We have implemented the event channel mechanism described here in the OIF distributed

computing framework, and applied it in a demonstration application [Lee98].  That

application implements a simulation of a distributed, competitive network management

application. It uses injectors to achieve quality of service (i.e., real-time performance),

manageability and security. It used the event mechanism to dynamically drive “inspector”

user interfaces. The event mechanism also proved critical in debugging the application,

particularly as the injector mechanism could be set to generate events on every remote

invocation. Events could then be selectively scanned to get a trace of interprocess calls,

and this trace could be transparently directed to both visible graphic user interfaces and

textual logs.

In general, in OIF one can arbitrarily and dynamically modify the injectors of

proxies or set the default behavior of a set of proxies to include a particular injector. By

making an injector that generates trace events and applying that injector appropriately,

the event mechanism can be made to track the patterns of interprocess calls in the system.

Related work

Event models

Event channels are a realization of Arbab’s Ideal Worker Ideal Manager (IWIM) model

of anonymous communications [Arbab96]. Workers are free of having to know who

consumes their production; managers are free of having to know the specifics of who

produced their consumables.

In the taxonomy of Coordinated Computing [Filman84], the OIF event-channel

mechanism is a problem-solving, process approach that supports dynamic processes;

unbuffered, asynchronous communication with unidirectional information flow; passive

communication control; pattern-matched reception and (effectively) broadcast sending,



Managing Distributed Systems 12/02/99

16

with no explicit notions of time, fairness or failure, and a strongly pattern-directed

invocation mechanism.

From the point of view of the Framework for Event-Based Software [Barrett96],

OIF’s event mechanism uses point-to-point, application-to-application communication.

Modules have no explicit specification of their interfaces. It supports dynamic system

modification and allows fully abstract naming. Our publishers are Barrett’s informers;

our consumers, listeners; and our event channels, routers. The subscription mechanism

effectively serves to do message transformation. We posit no delivery constraints beyond

the underlying distributed object framework. The local event channel on each virtual

machine serves as a group.

Rosenblum and Wolf [Rosenblum97] describe a seven-model framework for event

observation and notification. Within that framework, our publishers are the invoker

objects and subscribers, the objects of interest. Events are the explicitly generated by

invoking the send event action, naming is implicit in the naming of event fields (the

property-based model), observation is by explicit subscription, information is by the

action of a subscription, pattern abstraction and filtering is by the pattern part of the

subscription language, and the partitioning arises naturally from the set of subscriptions

made. We have no explicit time model, notification is by distributed object technology

calls, and the resources for sorting through subscriptions are provided by the sender and

the intermediary event channels.

Event implementations

Bates [Bates95] argues for using a rule-based publish and subscribe system to debug

heterogeneous, distributed systems. Primitive events are defined and source code is

annotated so that the executing program generates event instances. When a user-defined

model of behavior is matched to the event stream, a high-level event is recognized.

Behaviors are modeled in terms of event classes and their relationships, and may be

composed to form higher-level behavior models. Bates also uses a rule-based engine for

complex event detection, fairly similar to Rete, though independently discovered.

The Elvin project is a publish-subscribe service that delivers notifications on the

basis on the event’s content [Segall97]. It has an event subscription language that allows



Managing Distributed Systems 12/02/99

17

subscribers to place some constraints over the notifications, flexible definition of events

that allow developers to define events as required, dynamic definition of event types, and

allows for the creation of new events based on old events. Elvin also introduces the idea

of quenching that “allows event producers to receive information about what consumers

are expecting of them so that they need only generate events that are in demand.” This

corresponds to our notion of event channels being able to provide the union of their

subscriptions. In contrast to Elvin, which has a single centralized event channel, OIF’s

event channels are distributed. Lacking a centralized, potential bottleneck, OIF is thus

scalable, though the architecture leaves open to the user arranging the actual connectivity.

The Ariadne Debugger in TAU stores an execution history graph of events and

allows the subscriber to specify patterns using a simple subscription language that is

capable expressing temporal relations among several events but unable to express other

simple prepositional or complex relations among events [Shende96]. To “compensate”

for where the language lacks, Ariadne “provides a scalable, spread-sheet like interface for

exploring match trees.”

The CEDMOS project architecture is composed of event-producers and event-

consumers that are connected through event-transformers. “The event transformers

convert streams of incoming events into different streams of events, which are …of

interest to the event-consumers” [Baker98]. To facilitate the event transformers, a

graphical tool facilitates the definition of complex event from simple events.

Brant and Kristensen apply events to web-based notification. Their architecture

includes the notions of annotated lists, a well-worked-out datatype mechanism and a

good notion of the idea of filtering [Brant97]. Intermetrics [Ress98] describes a design

for applying events to doing debugging of distributed, component-based products.

Luckham and Frasca apply event patterns, causal histories, filtering and aggregation to

provide higher levels of abstractions for managing distributed systems [Luckham98]. The

notion of spreading communication about information providers is seen in the lookup

service provides in Jini [Waldo99]. Jini lookup service providers inform each other of the

lookup service providers they know about.



Managing Distributed Systems 12/02/99

18

Summary and discussion

We have discussed the publish and subscribe mechanism in the Object Infrastructure

Framework. This mechanism has proved to be a powerful tool in debugging and

managing distributed systems, supporting functions such as fault diagnosis, intrusion

detection, performance analysis, and accounting. Key elements of this work are existence

within a framework that provides a continuing environmental context, the use of

unstructured events, rich subscription languages, and selectable and efficient algorithms

for subscription resolution. Topics for further work include (1) subscription-forwarding

mechanisms that do not require tree-like branching, (2) security mechanisms for

subscriptions and event channeling (including the ability of an event generator to limit

who could notice his events), (3) quantifying the actual performance of different event-

channel algorithms in realistic cases, (4) implementing agent subscription languages, and

(5) implementing subscription compilation.

References

1. Arbab. F. The IWIM model for coordination of concurrent activities. Coordination

’96, Lecture Notes on Computer Science, vol.1061, P. Ciancarini, and C. Hankin

(Eds.), Springer-Verlag, New York, 1996.

2. Baker, D., Cassandra, A., Rashid, M. CEDMOS: Complex Event Detection and

Monitoring System. Microelectronics and Computer Technology Corporation, 1998.

3. Barrett, D. J., Clarke, L. A., Tarr, P. L., and Wise, A. L. An Event-Based Software

Integration Framework. ACM Transactions on Software Engineering and

Methodology 5, 4 (October 1996) 378–421.

4. Bates, P. C. Debugging Heterogeneous Distributed Systems Using Event-Based

Models of Behavior. ACM Transactions on Computer Systems 13, 1 (February 1995),

1–31.

5. Brandt, S. and Kristensen, A. Web Push as an Internet Notification Service, W3C

Workshop on Push Technology, (Boston, Massachusetts, September 1997),

http://keryxsoft.hpl.hp.com/doc/ins.html.



Managing Distributed Systems 12/02/99

19

6. Filman, R. E., Barrett, S., Lee, D. D., and Linden, T. Inserting Ilities by Controlling

Communications. To appear in Communications of the ACM, 2000.

7. Filman, R. "The Arachnoid Tourist: Managing a Spider’s Net,"  IEEE Internet

Computing, Vol. 1, No. 5, October, 1997, pp. 50–51.

8. Filman, R. E., and Friedman, D. P. Coordinated Computing: Tools and Techniques

for Distributed Software. McGraw-Hill, New York, 1984.

9. Friedman-Hill, E. J. Jess, The Java Expert System Shell. DANS98-8206 Distributed

Computing Systems Sandia National Laboratories. Livermore, CA, (September

1998), http://herzberg.ca.sandia.gov/jess

10. Forgy, C. L. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem. Artificial Intelligence 19, 1 (1982) 17–37.

11. Lee, D. and Filman, R. Verification of Compositional Software Architectures. Work-

shop on Compositional Software Architectures, Monterey, California, January 1998.

http://www.objs.com/workshops/ws9801/papers/paper096.doc.

12. Luckham, D. C. and Frasca, B. Complex Event Processing in Distributed Systems.

Stanford University Technical Report CSL-TR-98-754 (March 1998),

ftp://pavg.stanford.edu/pub/cep/fabline.ps.Z

13. Ress, J. Intermetrics’ Owatch Debugging Technology for Distributed, Component-

Based Systems. OMG-DARPA-MCC Workshop on Compositional Software

Architectures (Monterey, California, January 1997)                                        

http://www.objs.com/workshops/ws9801/papers/paper058.html.

14. Rosenblum, D. S., and Wolf, A. L. A Design Framework for Internet-Scale Event

Observation and Notification. Proceedings of the Sixth European Software

Engineering Conference / ACM SIGSOFT Fifth Symposium on the Foundations of

Software Engineering (September 1997), 344–360.

15. Segall, B. and Arnold, D. Elvin has left the building: A publish/subscribe notification

service with quenching. Proceedings of AUUG97 (Brisbane, Queensland, Australia,

September 1997).



Managing Distributed Systems 12/02/99

20

16. Shende, S., Cuny, J., Hansen, L., Kundu, J., McLaughry, S., and Wolf, O. Event and

State-Based Debugging in TAU: A Prototype. Proceedings of SPDT’96:

SIGMETRICS Symposium on Parallel and Distributed Tools (Philadelphia, May

1996), 21–30.

17. Stallings, W. SNMP, SNMP-2, and CMIP: The Practical Guide to Network-

Management Standards. Reading MA: Addison-Wesley 1993

18. Waldo, J. The Jini architecture for network-centric computing, Comm. ACM 42, 7

(July 1999), 76–82.


